Listen free for 30 days
Listen with offer
-
Dark Data & Dark Social
- The Promising Problem Children of Big Data and Data Science
- Narrated by: Dave Wright
- Length: 1 hr and 9 mins
Failed to add items
Add to basket failed.
Add to wishlist failed.
Remove from wishlist failed.
Adding to library failed
Follow podcast failed
Unfollow podcast failed
£0.00 for first 30 days
Buy Now for £6.99
No valid payment method on file.
We are sorry. We are not allowed to sell this product with the selected payment method
Summary
Simply put, Dark Data is stored, largely non-inventoried, unstructured data not currently used for the purpose of conducting data science, but which is nevertheless maintained on a "just in case" basis - either to meet regulatory requirements, or in the hope that the data will prove useful for research purposes at some time in the future. "Gathering dust" in archives, Dark Data, is - as less simply put by CIO and industry pundit Isaac Sacolick - "data and content that exists and is stored, but is not leveraged and analyzed for intelligence or used in forward looking decisions. It includes data that is in physical locations or formats that make analysis complex or too costly, or data that has significant data quality issues. It also includes data that is currently stored and can be connected to other data sources for analysis, but the business has not dedicated sufficient resources to analyze and leverage." Add to this unstructured data of a nature for which sufficiently robust or accurate analysis tools have not yet been invented, and some data (notably most log files) which will simply never be of use and will never yield useful Business Intelligence, commonly known as BI.
In Dark Data & Dark Social, Lars Nielsen explores then nature of Dark Data, how to go about discerning genuinely useful Dark Data amid the large balance of useless data debris with which most enterprises are swamped, how to build a data science team to accomplish this task and leverage Dark Data to its utmost potential, how to safely and irrevocably dispose of unusable data debris, and also how to exploit some of the darkest of dark data: "Dark Social" the hard-to-track but incredibly valuable real-time data pegged to largely-anonymous second party referrals to web sites (as opposed to direct click-throughs). Throughout the book, Nielsen provides information in a user-friendly, jargon-free manner which assumes little technical background.
What listeners say about Dark Data & Dark Social
Average customer ratingsReviews - Please select the tabs below to change the source of reviews.
-
Overall
-
Performance
-
Story
- GarethMJ74
- 06-04-15
Drawn out basics
The pith of the story could've been completed within a fraction of the time by focusing on the key elements and points that needed to be reinforced. Whilst this was informative for a complete novice, it lacked any depth of detail for anyone with greater levels of experience.
If you already know a reasonable amount about how to get best value from data outside of the norm then this book is probably not for you.
Something went wrong. Please try again in a few minutes.
You voted on this review!
You reported this review!
-
Overall
-
Performance
-
Story
- Mike M
- 21-05-18
More an essay than a bokk
This is more of a long-form essay than a book. It has something of a dry, academic tone that would struggle to maintain interest if any longer.
Of the several books I've read on this subject, this wasn't the most insightful. But in fairness to the author, it is four years (at the time of this review) since this was written, which is a long time in computing evolution.
With what we now know about the Facebook data mishandling scandal which came to light following the 2016 USA presidential election, several of the author's assertions have now been proven to be something we should all be concerned about.
If you're looking to advance your knowledge of so called 'Big Data' and 'dark data' this is still a worthwhile read. Anything that adds to our understanding and concerns about the harvesting and use of our personal data has to be valuable.
Something went wrong. Please try again in a few minutes.
You voted on this review!
You reported this review!