Rounding Up

By: MLC - Mike Wallus
  • Summary

  • Welcome to Rounding Up, the professional learning podcast brought to you by The Math Learning Center. Two things have always been true in education: Ongoing professional learning is essential, and teachers are extremely busy people. Rounding Up is a podcast designed to provide meaningful, bite-sized professional learning for busy educators and instructional leaders. I'm Mike Wallus, vice president for educator support at The Math Learning Center and host of the show. In each episode, we'll explore topics important to teachers, instructional leaders, and anyone interested in elementary mathematics education. Topics such as posing purposeful questions, effectively recording student thinking, cultivating students' math identity, and designing asset-based instruction from multilingual learners. Don't miss out! Subscribe now wherever you get your podcasts. Each episode will also be published on the Bridges Educator Site. We hope you'll give Rounding Up a try, and that the ideas we discuss have a positive impact on your teaching and your students' learning.
    2022 The Math Learning Center | www.mathlearningcenter.org
    Show More Show Less
activate_Holiday_promo_in_buybox_DT_T2
Episodes
  • Season 3 | Episode 7 – How you say it matters: Teacher Language Choices that Support Number Sense Guest: Dr. James Brickwedde
    Dec 5 2024
    Rounding Up Season 3 | Episode 7 – Number Sense Guest: Dr. James Brickwedde Mike Wallus: Carry the 1, add a 0, cross multiply. All of these are phrases that educators heard when they were growing up. This language is so ingrained we often use it without even thinking. But what's the long-term impact of language like this on our students’ number sense? Today we're talking with Dr. James Brickwedde about the impact of language and the ways educators can use it to cultivate their students’ number sense. Welcome to the podcast, James. I'm excited to be talking with you today. James Brickwedde: Glad to be here. Mike: Well, I want to start with something that you said as we were preparing for this podcast. You described how an educator’s language can play a critical role in helping students think in value rather than digits. And I'm wondering if you can start by explaining what you mean when you say that. James: Well, thinking first of primary students, so kindergarten, second grade, that age bracket; kindergartners, in particular, come to school thinking that numbers are just piles of 1s. They're trying to figure out the standard order. They're trying to figure out cardinality. There are a lot of those initial counting principles that lead to strong number sense that they are trying to integrate neurologically. And so, one of the goals of kindergarten, first grade and above is to build the solid quantity sense—number sense—of how one number is relative to the next number in terms of its size, magnitude, et cetera. And then as you get beyond 10 and you start dealing with the place value components that are inherent behind our multidigit numbers, it's important for teachers to really think carefully of the language that they're using so that, neurologically, students are connecting the value that goes with the quantities that they're after. So, helping the brain to understand that 23 can be thought of not only as that pile of 1s, but I can decompose it into a pile of 20 1s and three 1s and eventually that 20 can be organized into two groups of 10. And so, using manipulatives, tracking your language so that when somebody asks, “How do I write 23?” it's not a 2 and a 3 that you put together, which is what a lot of young children think is happening. But rather, they realize that there's the 20 and the 3. Mike: So, you're making me think about the words in the number sequence that we use to describe quantities. And I wonder about the types of tasks or the language that can help children build a meaningful understanding of whole numbers, like say, 11 or 23. James: The English language is not as kind to our learners ( laughs ) as other languages around the world are when it comes to multidigit numbers. We have in English 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. And when we get beyond 10, we have this unique word called “eleven” and another unique word called “twelve.” And so, they really are words capturing collections of 1s really then capturing any sort of 10s in 1s relationship. There's been a lot of wonderful documentation around the Chinese-based languages. So, that would be Chinese, Japanese, Korean, Vietnamese, Hmong follows the similar language patterns where when they get after 10, it literally translates as ten 1, ten 2. When they get to 20, it's two ten, two ten 1, two ten 2. And so, the place-value language is inherent in the words that they are saying to describe the quantities. The teen numbers, when you get to 13, a lot of young children try to write 13 as three 1 because they're trying to follow the language patterns of other numbers where you start left to right. And so, they're bringing meaning to something, which of course is not the social convention. So, the teens are all screwed up in terms of English. Spanish does begin to do some regularizing when they get to 16 because of the name diez y seis, so ten 6. But prior to that you have, again, sort of more unique names that either don't follow the order of how you write the number or they're unique like 11 and 12 is. Somali is another interesting language in that—and I apologize to anybody who is fluent in that language because I'm hoping I'm going to articulate it correctly—I believe that there, when they get into the teens, it's one and 10, two and 10, is the literal translation. So, while it may not be the ten 1 sort of order, it still is giving that the fact that there's ten-ness there as you go. So, for the classrooms that I have been in and out of both as my own classroom years ago as well as the ones I still go in and out of now, I try to encourage teachers to tap the language assets that are among their students so that they can use them to think about the English numbers, the English language, that can help them wire that brain so that the various representations, the manipulatives, expanded notation cards or dice, the numbers that I write, how I break the numbers apart, say that 23 is equal to 20 plus 3. All of ...
    Show More Show Less
    26 mins
  • Season 3 | Episode 5 - Building Asset-Focused Professional Learning Communities - Guests: Summer Pettigrew and Megan Williams
    Nov 26 2024
    Rounding Up Season 3 | Episode 05 - Building Asset-Focused Professional Learning Communities Guests: Summer Pettigrew and Megan Williams Mike Wallus: Professional learning communities have been around for a long time and in many different iterations. But what does it look like to schedule and structure professional learning communities that actually help educators understand and respond to their students’ thinking in meaningful ways? Today we're talking with Summer Pettigrew and Megan Williams from the Charleston Public Schools about building asset-focused professional learning communities. Hello, Summer and Megan. Welcome to the podcast. I am excited to be talking with you all today about PLCs. Megan Williams: Hi! Summer Pettigrew: Thanks for having us. We're excited to be here. Mike: I'd like to start this conversation in a very practical place, scheduling. So, Megan, I wonder if you could talk just a bit about when and how you schedule PLCs at your building. Megan: Sure. I think it's a great place to start, too, because I think without the structure of PLCs in place, you can't really have fabulous PLC meetings. And so, we used to do our PLC meetings once a week during teacher planning periods, and the teachers were having to give up their planning period during the day to come to the PLC meeting. And so, we created a master schedule that gives an hour for PLC each morning. So, we meet with one grade level a day, and then the teachers still have their regular planning period throughout the day. So, we were able to do that by building a time for clubs in the schedule. So, first thing in the morning, depending on your day, so if it's Monday and that's third grade, then the related arts teachers—and that for us is art, music, P.E., guidance, our special areas—they go to the third-grade teachers’ classrooms. The teachers are released to go to PLC, and then the students choose a club. And so, those range from basketball to gardening to fashion to STEMs. We've had Spanish club before. So, they participate with the related arts teacher in their chosen club, and then the teachers go to their PLC meeting. And then once that hour is up, then the teachers come back to class. The related arts teachers are released to go get ready for their day. So, everybody still has their planning period, per se, throughout the day. Mike: I think that feels really important, and I just want to linger a little bit longer on it. One of the things that stands out is that you're preserving the planning time on a regular basis. They have that, and they have PLC time in addition to it. Summer: Uh-hm. Megan: Correct. And that I think is key because planning time in the middle of the day is critical for making copies, calling parents, calling your doctor to schedule an appointment, using the restroom … those kind of things that people have to do throughout the day. And so, when you have PLC during their planning time, one or the other is not occurring. Either a teacher is not taking care of those things that need to be taken care of on the planning period. Or they're not engaged in the PLC because they're worried about something else that they've got to do. So, building that time in, it's just like a game-changer. Mike: Summer, as a person who’s playing the role of an instructional coach, what impact do you think this way of scheduling has had on educators who are participating in the PLCs that you're facilitating? Summer: Well, it's huge. I have experienced going to A PLC on our planning and just not being a hundred percent engaged. And so, I think having the opportunity to provide the time and the space for that during the school day allows the teachers to be more present. And I think that the rate at which we're growing as a staff is expedited because we're able to drill into what we need to drill into without worrying about all the other things that need to happen. So, I think that the scheduling piece has been one of the biggest reasons we've been so successful with our PLCs. Mike: Yeah, I can totally relate to that experience of feeling like I want to be here, present in this moment, and I have 15 things that I need to do to get ready for the next chunk of my day. So, taking away that “if, then,” and instead having an “and” when it comes to PLCs, really just feels like a game-changer. Megan: And we were worried at first about the instructional time that was going to be lost from the classroom doing the PLC like this. We really were, because we needed to make sure instructional time was maximized and we weren't losing any time. And so, this really was about an hour a week where the teachers aren't directly instructing the kids. But it has not been anything negative at all. Our scores have gone up, our teachers have grown. They love the kids, love going to their clubs. I mean, even the attendance on the grade-level club day is so much better because they love coming in. And they start the day really getting ...
    Show More Show Less
    18 mins
  • Season 3 | Episode 6 – Nurturing Mathematical Curiosity: Supporting Mathematical Argumentation in the early grades Guests: Drs. Jody Guarino and Chepina Rumsey
    Nov 21 2024
    Rounding Up Season 3 | Episode 6 – Argumentation, Justification & Conjecture Guests: Jody Guarino and Chepina Rumsey Mike Wallus: Argumentation, justification, conjecture. All of these are practices we hope to cultivate, but they may not be practices we associate with kindergarten, first-, and second-graders. What would it look like to encourage these practices with our youngest learners? Today we'll talk about this question with Jody Guarino and Chepina Rumsey, authors of the book Nurturing Math Curiosity with Learners in Grades K–2. Welcome to the podcast, Chepina and Jody. Thank you so much for joining us today. Jody Guarino: Thank you for having us. Chepina Rumsey: Yeah, thank you. Mike: So, I'm wondering if we can start by talking about the genesis of your work, particularly for students in grades K–2. Jody: Sure. Chepina had written a paper about argumentation, and her paper was situated in a fourth-grade class. At the time, I read the article and was so inspired, and I wanted it to use it in an upcoming professional learning that I was going to be doing. And I got some pushback with people saying, “Well, how is this relevant to K–2 teachers?” And it really hit me that there was this belief that K–2 students couldn't engage in argumentation. Like, “OK, this paper's great for older kids, but we're not really sure about the young students.” And at the time, there wasn't a lot written on argumentation in primary grades. So, we thought, “Well, let's try some things and really think about, ‘What does it look like in primary grades?’ And let's find some people to learn with.” So, I approached some of my recent graduates from my teacher ed program who were working in primary classrooms and a principal that employed quite a few of them with this idea of, “Could we learn some things together? Could we come and work with your teachers and work with you and just kind of get a sense of what could students do in kindergarten to second grade?” So, we worked with three amazing teachers, Bethany, Rachael, and Christina—in their first years of teaching—and we worked with them monthly for two years. We wanted to learn, “What does it look like in K–2 classrooms?” And each time we met with them, we would learn more and get more and more excited. Little kids are brilliant, but also their teachers were brilliant, taking risks and trying things. I met with one of the teachers last week, and the original students that were part of the book that we've written now are actually in high school. So, it was just such a great learning opportunity for us. Mike: Well, I'll say this, there are many things that I appreciated about the book, about Nurturing Math Curiosity with Learners in Grades K–2, and I think one of the first things was the word “with” that was found in the title. So why “with” learners? What were y'all trying to communicate? Chepina: I'm so glad you asked that, Mike, because that was something really important to us when we were coming up with the title and the theme of the book, the message. So, we think it's really important to nurture curiosity with our students, meaning we can't expect to grow it in them if we're not also growing it in ourselves. So, we see that children are naturally curious and bring these ideas to the classroom. So, the word “with” was important because we want everyone in the classroom to grow more curious together. So, teachers nurturing their own math curiosity along with their students is important to us. One unique opportunity we tried to include in the book is for teachers who are reading it to have opportunities to think about the math and have spaces in the book where they can write their own responses and think deeply along with the vignettes to show them that this is something they can carry to their classroom. Mike: I love that. I wonder if we could talk a little bit about the meaning and the importance of argumentation? In the book, you describe four layers: noticing and wondering, conjecture, justification, and extending ideas. Could you share a brief explanation of those layers? Jody: Absolutely. So, as we started working with teachers, we'd noticed these themes or trends across, or within, all of the classrooms. So, we think about noticing and wondering as a space for students to make observations and ask curious questions. So, as teachers would do whatever activity or do games, they would always ask kids, “What are you noticing?” So, it really gave kids opportunities to just pause and observe things, which then led to questions as well. And when we think about students conjecturing, we think about when they make general statements about observations. So, an example of this could be a child who notices that 3 plus 7 is 10 and 7 plus 3 is 10. So, the child might think, “Oh wait, the order of the addends doesn't matter when adding. And maybe that would even work with other numbers.” So, forming a conjecture like ...
    Show More Show Less
    24 mins

What listeners say about Rounding Up

Average customer ratings

Reviews - Please select the tabs below to change the source of reviews.